URUG’LANISH JARAYONI, XILLARI VA AHAMIYATI
Keywords:
Tabiiy tanlanish, evolyutsiya, jinsiy, jinssiz, gameta, spermatozoid, partenogenez, reproduksiyaAbstract
Ushbu tezisda urug’lanish jarayoni, uning turlari va biologik ahamiyati haqida qisqacha tushuncha beruvchi mazmunni o’z ichiga oladi.
References
1. Badalxodjayev I., Madumarov T. “Sitologiya”. And. 2013.
2. Nazarova F.SH., D. Jumanova N.E. “Sitologiya asoslari”. Samarqand. Artex. - 2024.
3. Q.R.To’xtayev, F.X.Azizova, M.A.Abduraxmonov, Sitologiya, gistologiya va embriologiya. 2022.
4. Tursunov E. “Sitologiya va umumiy gistologiya”. Toshkent. Turon-Iqbol - 2020.
5. Abdufattokhov, S., Ibragimova, K., & Gulyamova, D. (2021, November). The applicability of machine learning algorithms in predictive modeling for sustainable energy management. In International Conference on Forthcoming Networks and Sustainability in the IoT Era (pp. 379-391). Cham: Springer International Publishing.
6. Ghodake, S. P., Malkar, V. R., Santosh, K., Jabasheela, L., Abdufattokhov, S., & Gopi, A. (2024). Enhancing Supply Chain Management Efficiency: A Data-Driven Approach using Predictive Analytics and Machine Learning Algorithms. International Journal of Advanced Computer Science & Applications, 15(4).
7. Dohare, S., Pamulaparthy, L., Abdufattokhov, S., Naga Ramesh, J. V., El-Ebiary, Y. A. B., & Thenmozhi, E. (2024). Enhancing Diabetes Management: A Hybrid Adaptive Machine Learning Approach for Intelligent Patient Monitoring in e-Health Systems. International Journal of Advanced Computer Science & Applications, 15(1).
8. Abdufattokhov, S., Normatova, N., & Shermatova, M. (2022). Artificial Neural Networks Based Predictive Model for Detecting the Early-Stage Diabetes. Journal of Artificial Intelligence, Machine Learning and Neural Network (JAIMLNN) ISSN, 2799-1172.
9. Chen, Z., Xie, M., Zu, Q., & Abdufattokhov, S. (2023). Electrical Automation Intelligent Control System Based on Internet of Things Technology. Electrica, 23(2).
10. Abdufattokhov, S., Mahamatov, N., Ibragimova, K., Gulyamova, D., & Yuldashev, D. (2022). Supervisory optimal control using machine learning for building thermal comfort. Operations Research and Decisions, 32(4).